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IMAGERY DATA BY BAYESIAN AND SET-THEORETIC APPROACHES

FINAL REPORT

Dr. Malur K. Sundareshan
Professor of Electrical and Computer Engineering
University of Arizona, Tucson, AZ 85721-0104

ABSTRACT

This project, supported by a grant from the Air Force Office of Scientific Research, was
primarily aimed at the design of novel algorithms for the restoration and super-resolution
processing of imagery data to improve the resolution in images acquired from practical sensing
operations. Due to the diffraction limits underlying these operations, the image recorded at the
output of the imaging system is a low-pass filtered version of the original scene and hence
recovery of the lost information contributing to the finer details is required to produce significant
resolution enhancement. While traditional image restoration procedures (based on deconvolution
and inverse filtering approaches) attempt mainly reconstruction of the passband, super-resolution
algorithms attempt to provide not only passband restoration but also some degree of spectral
extrapolation thus enabling to restore the high frequency spatial amplitude variations relating to
the spatial resolution of the sensor and lost due to diffraction-limited imaging. These algorithms
are typically iterative in nature and implement nonlinear signal processing operations. Two
distinct approaches that have resulted in powerful super-resolution algorithms are based on
statistical optimization arguments and set-theoretic estimation procedures. The principal
objectives in this project were to develop and evaluate specific techniques for developing new
processing algorithms by combining the strong points of the two approaches. The prmmpal
outcomes from this work include the following:

e Systematic nrecedures for extracting and modeling scene-derived information sets for
projection-based set-theoretic super-resolution processing;

e Design of hybrid processing algorithms that integrate Projection Onto Convex Sets
(POCS) iterations with Maximum Likelihood (ML) estimation procedures to yield
superior restoration and super-resolution performance.

In order to increase the relevance of the work conducted in this project to the U.S. Air Force
needs, a close liaison was maintained with the Air Force Wright Laboratory Armament
Directorate (at Eglin AFB). For proof of concept demonstrations, the tailoring of the algorithms
as well as the processing studies were conducted with a special focus on achieving resolution
enhancements in the passive millimeter-wave (PMMW) images acquired by the Air Force
Wright Laboratory Armament Directorate with the state-of-the-art radiometers being built by
them.



TABLE OF CONTENTS

AB ST RACT ittt ettt 2
LIST OF FIGURES ...ttt e 4
1. INTRODUCTION ..ttt ettt e e e 5
1.1 Principal Objectives of the Project ... 5
1.2 Restoration and Super-resolution Processing of Sensor Acquired Data ... 7

1.3 Basic Considerations in Design of Super-resolution Processing Algorithms .. 9
1.4 Approaches and Methods for Design of Super-resolution Algorithms ....... 13
1.5 Outline of the Report .....o.evuiiiiiiiiiiiii e 17
2. SUPER-RESOLUTION BY ITERATIVE MAXIMIZATION OF LIKELIHOOD ... 18
2.1 Restoration and Super-resolution Performance of an Iterative ML Algorithm .. 18
2.2 Analysis of the Dynamics of the Iterative Scheme ........................ 21

3. POCS APPROACH TO RESTORATION WITH SCENE-DERIVED
INFORMATION CONSTRAINTS ..28

3.1 Basics of Convex Set-theoretic Restoration of Images ......................e. 28
3.2 Scene-derived Information and Constraint Set Modeling ........................ 30
3.3 Restoration of Blurred Images using Scene-derived Constraint sets ........... 42

4. A HYBRID SUPER-RESOLUTION ALGORITHM COMBINING POCS
AND ML APPROACHES .. 46

4.1 POCS-assisted ML Algorithm .........ccooiiiiiiiiiiiiii e, 46
4.2 ML-assisted POCS Algorithm .........cocoiiiiiiiiiiiii, 49

4.3 Application of POCS-Assisted ML Algorithm to Restoration of
PMMW Images ............... 52
5. CONCLUSIONS .ttt ettt et e e e ettt e e e e e ee e 55
REFERENCES ..ot e 56




LIST OF FIGURES

Fig. la. Schematic of Noniterative ( Direct) Super-resolution ... ...................c.cc.cooen ..

Fig. 1b. Schematic of Iterative Super-reSOIUtion ... ... ..............ccoooie i ictiiiiecenone v,

Figs. 2a and 2b: Blurred “Circles” image and its restoration by ML algorithm ............
Figs. 3a and 3b: Magnitude spectra of blurred and restored Images ..........................

Figs. 4a, 4b and 4c: Acquired PMMW image and its super-resolved versions

after 25 and 100 iterations of ML algorithm .........
Fig. 5a. Convergence of reStOration €rror ... ......... ..o oee o e vee et e e et e e e e e
Fig. 5b. Likelihood increase with progress of iterations ................ecoee e even e

Fig. 6. Border tracking performance ...................c. oo oot e ces cot e e see e e e e

Fig. 7. Projection operation for enforcing border constraint in an image
with multiple borders ... ... ...

Fig. 8 Restoration and super-resolution of a blurred image using
border constraint set ... ... ...

Fig. 9. Template location in @ €St IMAGE ... ... ... ....c..ccocv et cviee cee s et e et e et e et e
Fig 10. Restoration of a blurred image with MOPP algorithm ..........ccccccce v ve e e
Fig. 11a. Plot of Likelihood VaIUes ......................c..cccoiooe e oo oo oo eee e
Fig. 11b. Plot of 1,-norm of ReStoration EFror ... ... cvee cvoee ce e
Fig. 12a. Plot of Proximity Measure ... ................coee e cee v fue e vt ee e v e et e e aa
Fig. 12b. Plot of I,-norm of ReStoration Error .............c..cocce oot ievee voe e ove e e

Fig. 13. Results of processing PMMW “pattern” image with ML and
POCS-assisted ML algorithms ......

Fig.14. Comparison of spatial frequency spectra of processed and unprocessed images ...

Fig. 15. Restoration of “Tank” image by POCS-assisted ML algorithm ... ..................

12
13
20

20

22

35

36

37 -

41

45

48

48

50

51

52

54

54



1. INTRODUCTION
1.1 Principal Objectives of the Project

Imagery data acquired from practical sensing operations typically suffer from poor spatial
resolution due to the finite size of antenna or lens that makes up the imaging system and the
consequent imposition of the underlying diffraction limits. Hence, some form of post-detection
image processing directed to enhancing the resolution will often be needed before the obtained
measurements can be used reliably for any image exploitation and decision-making objectives.
Image restoration has a considerably long history and several powerful procedures have been
developed to restore degraded images [1]. However, since the image recorded at the output of the
imaging system is a low-pass filtered version of the original scene, recovery of the lost
information contributing to the finer details is indeed necessary to produce significant resolution
enhancement. Recognizing this fact, researchers have directed their attention to the design of
efficient processing schemes, commonly referred to as super-resolution algorithms, that achieve
not only a satisfactory restoration of the passband (by attempting to reverse the effects of
convolution with the sensor point spread function within the image bandwidth) but also som.e
degree of spectral extrapolation to recover the lost frequencies beyond the diffraction-limited
cutoff.

The primary goal in this project was the develc;pment of novel approaches and
procedures for the restoration and super-resolution of diffraction-limited imagery data in order to
achieve resolution enhancements that facilitate improved surveillance and tracking of targets of
interest. In practical applications, potential advantages that could be achieved from such

resolution enhancements beyond those dictated from practical limits (such as the one given by

the Rayleigh criterion [2]) are:




(i) benefits in range of measurement — scene details that are potentially available from a closer

range can be obtained from longer range measurements;
(ii) benefits in sensor dimensions — resolution levels that are potentially obtainable from a larger
aperture or a bigger antenna can be achieved from less expensive or smaller size sensors ( a

typical payoff being to gain the effect of deploying a big antenna on a small airframe).

Our investigations towards this goal hence focused on several specific topics that included

the following:

o development of novel approaches based on statistical modeling and convex constraint sets for
resolution enhancement in the presence of noise and clutter;

e mathematical modeling of constraint sets and projection operators for specific a priori
information about the object or scene being imaged in order to facilitate inclusion in the
design of systematic restoration and super-resolution procedures based on the Projection-
Onto-Convex-Sets (POCS) approach;

e investigation of methods for combining POCS-based approaches with maximum likelihood

(ML) restoration methods for designing hybrid POCS-Bayesian super-resolution procedures;

Due to the fact that investigations on resolution enhancement have both military and non-
.‘'military applications, the studies were conducted using a general framework and employing
mathematical models. However, in order to provide validation of the studies conducted and the
results obtained to military environments, the work was performed in close collaboration with
the Air Force Wright Laboratory Armament Directorate personnel. In particular, the various
simulation experiments conducted to demonstrate the efficiency of the algorithms developed in
this project were appropriately tailored to process passive millimeter-wave (PMMW) imagery
data acquired from state-of-the-art PMMW radiometers being built by the Advanced Sensors

Group at the Air Force Wright Laboratory Armament Directorate.




1.2  Restoration and Super-resolution Processing of Sensor Acquired Data

Imaging sensors, no matter how carefully designed, have certain limitations arising
mainly from physical constraints, the principal one being poor resolution in the acquired
imagery. The diffraction-limited angular resolution, &, of an incoherent imaging system [2] is

given by

9—122i
=122

where A is the effective wavelength of imaging and D is the diameter of the limiting aperture of
the antenna or lens. As A increases, the achievable angular resolution decreases, i.e. €, the size
of the angle between two resolvable points, increases. It may be noted that the wavelength of a
synthetic aperture radar (SAR) operating at 1 GHz is about 1 inch long and one needs an antenna
as big as 40 ft wide in order to achieve a resolution requirement of being able to able to
distinguish points in a scene separated by about 1 meter at a distance of 1 Km. For a typiéal
passive millimeterwave (PMMW) sensor with a 1 ft diameter antenna and operating at 95 GHz,
the angular resolution is only about 10 mrad, which translates into a spatial resolution of about
10 meters at a distance of 1 Km. Some recent studies have also established that fo.r ensuring
reasonably adequate angular resolution (typically of the order of 4 mrad), a 95 GHz PMMW
imaging system with a sensor depression angle of 60° - 80° needs to be confined to very low
operational altitudes (of the order of 75-100 meters), which puts inordinate demands on the
surveillance and guidance schemes to facilitate such requirements. Similar resolution limitations
and the consequent requirements on operational conditions (some of which may be clearly
impossible to satisfy for tactical missions with reliability and survivability constraints) exist for
other types of sensing modalities as well. This in turn demands use of clever image processing

techniques to process the acquired imagery data and obtain improved resolution in the processed



images.

The fundamental problem underlying the sensing operation is the "low-pass" filtering
effect due to the finite size of the antenna or lens that makes up the imaging system and the
consequent imposition of the underlying diffraction limits. Hence the image recorded at the
output of the imaging system is a low-pass filtered version of the original scene. The portions of
the scene that are lost by the imaging system are the fine details (high frequency spectral
components) that accurately describe the objects in the scene, which also are critical for reliable
detection and classification of targets of interest in the scene. Hence some form of image
processing to restore the details and improve the resolution of the image will invariably be
needed. Traditional image restoration procedures (based on deconvolution and inverse filtering
approaches) attempt mainly at reconstruction of the passband and possibly elimination of effects
of additive noise components. These hence have only limited resolution enhancement
capabilities. Greater resolution improvements can only be achieved through a class of more
sophisticated algorithms, called super-resolution algorithms, which provide not only passband
reconstruction but also some degree of spectra! extrapolation, thus enabling to restore the high
frequency spatial amplitude variations relating to the spatial resolution of the sensor and lost
through the filtering effects of the seeker antenna pattern. A tactful utilization of the imaging
instrument's characteristics and any a priori knowledge of thé features of the target together with
an appropriately crafted nonlinear processing scheme is what gives the capability to these
algorithms for super-resolving the input image by extrapolating beyond the passband range and
thus extending the image bandwidth beyond the diffraction limit of the imaging sensor.

For application in surveillance environments, it must be emphasized that super-resolution

is a post-processing operation applied to the acquired imagery and consequently is much less



expensive compared to improving the imaging system for desired resolution. As an example, it
may be noted that for visual imagery acquired from space-borne platforms, some studies indicate
that the cost of camera payload increases as the inverse 2.5 power of the resolution. Hence a
possible two-fold improvement in resolution by super-resolution processing in this application
roughly translates into a reduction in the cost of the sensor by more than 5 times. Similar
relations also exist for sensors operating in other spectral ranges (due to the relation between
resolution and antenna size), confirming the cost effectiveness of employing super-resolution
algorithms. The principal goal of super-resolution processing in a multispectral surveillance
environment is hence to obtain an image of a target of interest via post-processing that is
equivalent to one acquired through a more expensive larger aperture sensor.
1.3 Basic Considerations in Design of Super-resolution Processing Algorithms

The idea of recreating the spectral components that are removed by the imaging process
and hence are not present in the image available for processing may pose some conceptual
difficulties, which may lead one to suspect whether super-resolution is indeed possible.
Fortunately there exist sound mathematical arguments confirming t!e possibility of spectral
extrapolation. The primary justification comes from the Analytic Contirluation Theorem and the
property that when an object has finite spatial extent its frequency spectrum is analytic [3]. Due
to the property that a finite segment of any analytic functioﬂ in principle determines the whole
function uniquely, it can be readily proved that knowledge of the passband spectrum of the
object allows a unique continuation of the spectrum beyond the diffraction limit imposed by the
imaging system. It must be emphasized that the limited spatial extent of the object is critical in

providing this capability for extrapolation in the frequency domain.




Fundamental to the reliable estimation of the high frequencies (that underly the super-
resolution objectives) is the utilization of a priori known information during the processing
steps. Indeed, since image restoration is inherently an ill-conditioned inverse problem, it is long
realized that the quality of restoration and the extent of achievable super-resolution depend on
the accuracy and the amount of a priori information the processing scheme can successtully
employ. Some of the earliest procedures proposed for image super-resolution [4,5] are baéed on
intelligently utilizing the known information in the form of constraints during the iterative
processing steps. In practice, one finds that a lot of information typically exists to assist guiding
the restoration process in a satisfactory direction. This includes, (i) Information about the
solution, such as non-negativity of pixel intensities, spatial extent of objects present in the scene,
known ranges for signal intensities, etc., (i) Information about the imaging system, such as
sensor phenomenology, aperture size and the resulting shape of the optical transfer function
(OTF), etc., and (iii) Information about the imaging conditions, such as the extent of observation
noise, object motion during imaging, etc. In addition, as will be shown in this paper, a variety of
information can be extracted from the image that is being processed, which we will call scex.-
derived information, and this can further assist in the restoration operations.

Does availability of more information automatically translate into better restoration and
more super-resolution? Since the primary objective is the (;reation of data not present in the
image being processed, there is major concern on the fidelity of the estimated high frequencies
(one may note that addition of random noise can also lead to an expansion of image bandwidth).
Utilization of more and diverse types of information consequently provides a mechanism for
cross-validation thus resulting in a faithful re-creation of the true frequencies present in the

object or scene being restored. Employing all of the available information does not come
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without a price, however. More information used during the iterative processing steps almost
always translates into increased computational complexity, which in turn could contribute to
poorer convergence speed of the super-resolution algorithm. It is easy to see that if two different
types of information that are desired to be utilized are not appropriately modeled for inclusion in
the algorithm (as an example, two information sets modeled such that they do not have a proper
intersection), it will have detrimental effects on the algorithm convergence. Consequently,
information analysis and information modeling are critical steps before subjecting the image to
super-resolution processing.

Varying by the extent to which a priori knowledge can be incorporated in algorithm
development, there have been introduced into the literature a large number of image restoration
approaches and algorithms too vast to describe or reference here. One may refer to some recent
survey papers [6,7] for a review of the extensive activity on this topic. In the context of the
objectives of the present project however, it is important to recognize that only a small subset of
the approaches that are developed for image restoration have received some interest for their
super-resolution capabilities, i.e. possible spectrum extrapolation performance. One may note
tl;at not all image restoration methods provide the capability for super-resolving. In fact, a
majority of existing schemes may perform decent passband restoration, but provide no
bandwidth extension at all.

The various approaches in general attempt to code the a priori knowledge to be used by
specifying an object model or a set of constraint functions, and further employ an appropriate
optimization criterion to guide in the search for the best estimate of the object. A convenient way
of classifying the resulting algorithms is into iterative and noniterative (or direct) schemes. Fig.

la and 1b depict schematically these two basic approaches. Noniterative approaches generally

11




attempt to implement an inverse filtering operation (without necessarily performing the
computation of the inverse of the PSF matrix H, however) and have poor noise characteristics.
All required computations and any possible use of constraint functions are applied in one step. In
contrast, iterative methods apply the constraints in a distributed fashion as the solution
progresses and hence the computations at each iteration will be generally less intensive than the
single-step compufation o.f noniterative approaches. Some additional advantages of iterative
techniques are that, (1) they are more robust to errors in the modeling of the image formation
process (uncertainties in the model for the sensor point spread function, for instance), (2) the
solution process can be better monitored as it progresses, (3) constraints can be utilized to better
control the effects of noise (and possibly clutter), and (4) can be tailored to offset sensor
nonlinearities. The disadvantages of these methods generally are, (1) increased computation
time, and (2) need for proving convergence of the iterative scheme. Despite these disadvantages,
iterative methods are generally the preferred approach due to their numerous advantages and also
since the iteration can be terminated once a solution of a reasonable quality is achieved.
Consequently, most of the research in tailoring super-resolution algorithms is taking place at

present times in formulating iterative procedures.

A priori knqwledge and constraints

Object imaged f

——* Sensor > Super-resolution Filter [

Image g Object estimate f

Fig. 1a. Schematic of Noniterative ( Direct) Super-resolution
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Object imaged f Super-resolution Processing

— | Sensor || Filter1 [ | Filter2 » Filter 3 Filter n >
Object
Image g estimate f

A priori knowledge and constraints
Fig. 1b. Schematic »f Iterative Super-resolution

1.4  Approaches and Methods for Designrof Super-resolution Algorithms

For the design of specific digital processing algorithms for image super-resolution, a
number of different approaches have been proposed in the past, which have lead to explicit
procedures for both iterative and non-iterative constructions of the restored image from its
degraded version. Perhaps one of the earliest procedures, suggested by Gerchberg [4] and
Papoulis [5], involves alternately applying constraints in the space-domain and in the frequency-
domain in the quest for reconstructing the unknown portion of the frequency spectrum from a
limited known portion, viz. the passband of the sensor. Much of the activity in recent times ﬁas
centered on statistical optimization methods. In this approach one employs an iterative scheme
for constructing estimates of the object imaged, either in the form of a maximum likelihood
(ML) estimate [8-10] or a maximum a posteriori (MAP) estimate [11-13], from using the
acquired image and an OTF model for the sensor. A specific iterative updating scheme, which is
a special form of implementing the well known Expectation;Maximization (EM) algorithm and
is popularly referred to as Richardson-Lucy iteration, attempts to improve the value of the
likelihood function during successive iterations. This scheme has received considerable attention
in the past and several studies (too numerous to mention individually) have been directed to
understanding the convergence and other properties of the iterative process. Several
modifications and refinements of these algorithms have also been developed in the recent past to

ensure good performance even under non-ideal conditions such as imperfect knowledge of




sensor OTF and high levels of noise corrupting the acquired image [14,15]. A few non-iterative
algorithms have also been developed. Notable among these is the algorithm due to Darling e al.
[16], which performs regularized approximation in a weighted Hilbert space by utilizing a priori
information. A more recent effort in this direction is due to Walsh and Nielsen-Delaney [17] who
employed a method based on singular value decomposition. It is generally agreed, however, that
non-iterative methods do not offer the same degree of flexibility provided by iterative methods in
utilizing the known a priori information during processing, which is at the heart of super-
resolution constructions. Extensive comparison studies that document the performance benefits
resulting from the use of iterative algorithms when compared with other approaches for the
super-resolution processing of specific types of images are also available [18,35].

The effectiveness of statistical optimization methods in achieving restoration and super-
resolution depends to a large extent on the probability distribution models used to formulate the
optimization criterion (i.e. the probability model for the likelihood function or for the a
posteriori distribution). For the sake of obtaining a simple-to-implement updating algorithm, one
typically employs a simple distribution function, such as a Poissun process, to model these
quantities. Unfortunately however, processing with such an algorithm can yield less thén
optimal performance when the emission process underlying the particular sensing mechanism
deviates from Poisson statistics and requires a more general distribution model ‘(such as a
Rayleigh distribution). Use of more general distribution functions in the optimization process
will result in corresponding iterative updating schemes, which may not be attractive to
implement due to heavy computational demands. Thus, there is a fundamental conflict between
the goals of implementation simplicity and accuracy of representation in the design of algorithms

following this approach forcing one to sacrifice one or the other of the two objectives.
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Yet another approach for image restoration that is gaining greater popularity but is
fundamentally very distinct from the statistical optimization methods is the employment of a
convex set theoretic framework in which several constraint sets that could be formulated from
known g priori information can be employed during iterative processing steps. When compared
to statistical methods for image restoration, set-theoretic methods are relatively new. The earh_est
work on set-theoretic estimation in a general context can be traced to a 1965 paper by Bergmén
[19]. The Gerchberg-Papoulis procedure for super-resolution [4,5], discussed earlier, can be
regarded as another early attempt at implementation of set-theoretic estimation to signal
reconstruction. However, it is the introduction of a new iterative procedure for an organized
synthesis of set theoretic estimates, which has now come to be known as Projection Onto Convex
Sets (POCS), that marked the beginning of the interest in this approach and secured its steady
growth. Although the POCS framework was first developed by Gubin et. al. [20], and further
expanded by Lent et. al. [21], it was a series of three pioneering papers by Youla and others [22-
24] that popularized this approach among the scientific and engineering community and
established a broad conceptual and computational basis for signal recovery. Some n=etul
properties of POCS reconstructions in the solution of deconvolution problems are also discussed
by Trussell and Civanlar [25]. A comprehensive discussiqn on this approach together with
several useful extensions can be found in a tutorial paper by Combettes [26]. In the field of
image processing, more interest in this approach has so far been shown by medical imaging
researchers in handling such problems as tomographic image reconstruction [27,28] and
construction of 3-D animations of cardio-vascular functions [29], etc.

The conflict cited above that exists between implementation simplicity (which in turn is

motivated by the desire to execute sufficient number of algorithm iterations in real time without
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slowing the output rate of sensor) and representation accuracy (which is motivated by the desire
to utilize as much of the relevant and accurate information as feasible during the processing
steps) has encouraged researchers to seek new methods that enable one to handle the trade-offs
more satisfactorily. In this report we shall present an attractive solution towards this goal by
'attempting to answer the question — “how can the super-resolution performance of a simple-to-
implement algorithm, such as the Richardson-Lucy iteration, be improved by use of additional
knowledge that may be available?” An answer to this question is suggested by the inclusion of
intermediate adjustment steps involving implementation of convex constraint sets that model the
available additional knowledge. Motivating the development of the resulting processing schemes
is the observation that set theoretic methods offer a greater flexibility in incorporating available a
priori information into the restoration process than what one can achieve by attempting to
squeeze all of this information into a single probability distribution function used in the statistical
optimization process. The restoration of the degraded image is achieved by iteratively projecting
the image onto the various convex constraint sets that model the different types of a priori
:nformation one may have in the restoration problem at hand. While efforts at the modeling of
éonstraint sets and the use of these in projection-based set theoretic image recovery constitutes a
popular direction for research at present, it seems that the idea of combining the strong points of
Bayesian schemes and that of the convex set based methods ﬁas not received much attention. In
fact, development of processing algorithms that intelligently combine the strong points of
Maximum Likelihood and POCS approaches has not been addressed at all. A primary
contribution of this project is the design of hybrid algorithms that attempt to leverage the strong
points of both ML iteration scheme (simplicity of execution, known convergence properties, etc.)

and the POCS adjustments (utilization of diverse types of information in guiding the restoration
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process, faster decay of restoration error, etc.). The development of specific constraint sets that
modél the scene-derived information for use in the POCS adjustment steps constitutes yet
another important contribution of this work.
1.5  Outline of the Report

The organization of this report is as follows. In Section 2 we discuss some basics of the ML
restoration algorithm and describe its super-resolution performance when applied to blurred
images. A mathematical analysis of the dynamics of the iterative process is presented to give an
insight into the properties of the restored image as well as to gain an understanding of the
possible modifications to improve the super-resolution performance. In Section 3 we give a brief
description of the mathematical background for set-theoretic image recovery. We also propose
two novel information extraction and constraint set modeling schemes, and their application in a
set theoretic image recovery framework. In Section 4 we present a new hybrid approach that is
tailored to combine the strong points of a Bayesian scheme, such as the ML algorithm, and those
of a projection based set-theoretic restoration scheme. Finally, we describe the performance of
two new super-resolution algorithms following this approach by presenting results of a few
experiments of super-resolving degraded image data. In order to emphasize the application of
these algorithms in the super-resolution of diffraction-limited images acquired in practice, we
will specifically include results from experiments of processiﬁg passive millimeter-wave images
acquired at the 95 GHz range' from state-of-the-art millimeter-wave radiometers. Finally in
Section 6, we shall present a summary of the results accomplished during this project and offer

some concluding remarks.

"It is to be noted that at these frequencies the signals have tremendous penetrating power thus providing attractive
imaging capabilities under adverse conditions and consequently a great interest exists at present in developing
passive sepsors operating at these frequencies. However, due to Rayleigh diffraction limits, the resolution in the
acquired image will be very poor offering the greatest challenges to test the ability of restoration and super-
resolution algorithms.
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2. SUPER-RESOLUTION BY ITERATIVE MAXIMIZATION OF LIKELIHOOD
2.1 Restoration and Super-resolution Performance of an Iterative ML Algorithm

As noted earlier, iterative image restoration algorithms developed using a maximum
likelihood (ML) estimation framework have attained considerable significance in recent times
for their super-resolution capabilities. The basfc idea underlying these methods is to account for
the statistical behavior of the emitted radiation at the level of individual photon events by
constructing appropriate object radiance distribution models. An algorithm that affords a

convenient digital implementation can be developed starting from a discretized formulation of

the model for the imaging process

g) =D h(y,x)f(x)+n(y) 0]

xeX

where f (x) denotes the object's intensity function defined on a region X, g(y) denotes the
intensity detected in the image defined on a region Y and /(x, y) denotes the point spread
function (PSF) of the imaging sensor and n(y) denotes the noise present. The classical image
restoration problem is to find the object intensity estimate f (x) given the data g(y).

There exists considerable literature on dev:loping explicit algorithms, mainly of an iteratiye

nature, for handling the image restoration problem within a statistical framework afforded by
such a formulation. A particularly attractive approach is to obtain a ML estimate f (x), i.e. the

object intensity estimate that most likely have created the measured data g(y) with the PSF
process A(y,x), which in turn is developed by maximizing an appropriately modeled likelihood
function. Modeling the likelihood function is basically obtaining a goodness-of-fit (GOF)
quantity for the measured data, since the likelihood function is a statistical distribution function

p(g/f) obtained as a fit to the relation between the data g(3) and the object f{x).
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For obtaining a digital processing algorithm, assuming that the image to be processed
consists of M x M equally spaced gray level pixels obtained through a sampling of the image
field at a rate that satisfies the Nyquist criterion, and using a lexicographical ordering of the

signals g, f and n, one can rewrite (1) as a convolution of two one-dimensional vectors

h=[h(1),1(2),....(N)]" and f =[£(1), £(2)..... f(N)]' in the form
g(i) = h(i)® f(i)+n(i), i=12...N, )
where N = M? and ® denotes convolution. Now assuming a Poisson distribution for p(g/f), the

estimate of the object f(x) that solves the optimization problem

~

f =arg mfaxp(g/f ) : ‘ 3)

can be developed through an iterative updating scheme given by
e~ P g(J) . -
+(J)=f(){*‘f“—.—}®h 4
Sia \J 7 (H®h()) ) 4
where f,(j) denotes the estimate of f () constructed at the k" iteration and ® denotes discrete

convolution. Details on the derivation of this algorithm can be found i the literature [4,5].

The ML algorithm outlined above possesses some attractive features (such as guaranteed
convergence, non-negativity of estimates, etc.) that are useful in practical implementation. The
optimization framework in which the algorithm is developed ensures that the likelihood function
p(g/H) monotonically increases over successive iterations of the algorithm and hence the
processed image improves in quality as the algorithm proceeds.

For demonstrating the super-resolution capabilities of this algorithm, some representative
results of applying it to restore blurred images is shown in Figs. 1 and 2. In Fig. la is shown the

blurred version of a simulated object comprising of a series of concentric disks created with the
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background (dark) at intensity value zero and the disks (bright) at intensity value one. For
simulating the blurring caused by a diffraction limited imaging sensor, this object was convolved
with the PSF of a low pass filter, with the result shown in Fig. 2a. In Fig. 2b is shown the
restored version of this image, and as is evident, the processing removes most of the effects of
blurring thus attempting to restore the original object. To demonstrate the extent of
super-resolution achieved, the magnitude spectra of the blurred image and the restored imagé are
shown in Figs. 3a and 3b respectively. The expanded frequency content clearly attests to the

super-resolution performance of the algorithm.

Figs. 2a and 2b: Blurred “Circles” image and its restoration by ML algorithm

2a

Figs. 3a and 3b: Magnitude spectra of blurred and restored Images

To illustrate the restoration achievable in processing practically acquired images with this

algorithm, the results of an experiment are presented. Fig. 4a shows a PMMW image (“Tank
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Image”) acquired by a single detector radiometer with 1 ft diameter aperture operating at 95
GHz. Figs. 4b and 4c respectively show the restored images obtained at the end of 25 and 100
iterations. It is evident that the resolution has considerably improved and the algorithm is quite
powerful in producing an image from which better features can be extracted than from the
original for any further information exploitation analysis, such as target classification. For
facilitating real-time implementation capability however, one desires to reduce the number of
iterations needed to obtain this level of resolution improvement, or to achieve even better

resolution if possible with less computational overhead. As will be shown later in this paper, the

POCS-assisted ML algorithm developed here will provide this capability.

Fzgs 4a, 4b and 4c: Acquired PMMW image and its super-resolved versions after 25 and 100
' iterations of ML algorithm

2.2 Analysis of the Dynamics of the Iterative Scheme

Although the restoration and super-resolution performance of the algorithm described in
Eq. (4) appear quite impressive from the experimental results presented above, an analysis of the
dynamics of the iterations is useful to obtain a greater insight into the restoration performance. In
the simulation experiment whose results are shown in Figs. 2 and 3, the original object (“Circles”
image from which the blurred version was constructed) is known, and hence a plot of the
“restoration error” (measured as some appropriate norm of the deviation between the original

object and the restored image) as iterations are continued can provide an indication of the speed
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of convergence of the algorithm. Also, since the algorithm is developed employing a maximum
likelihood framework, at each successive iteration the value of the likelihood function can be
computed from noting that the logarithm of the likelihood function is given by

N

N N
L(g/ fy=Inp(g!/ f)= Z & ln(th,f_,—) —thifi ; ©)

k=1

and this provides an alternate way of displaying the dynamics of the iterative scheme. Figs. 5a
and 5b respectively show the behavior of the L, -norm of the deviation between the object and
the processed image, and the increase in likelihood, as iterations progress. It can be seen that the
two curves display an inverse behavior, which is to be expected. What is more interesting,
however, is to observe that after an initial steep decay of the restoration error, or a steep increase
in the likelihood, the changes in the values of these quantities between two successive iterations
get progressively less pronounced. A more rigorous mathematical analysis of the iterative

scheme is useful to gain further insight into this behavior.
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2.15E+01 o 1.456+00
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©
E 2056401 S 1.35E+00 |
g £
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-
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1 1 21 31 41 51 1 11 21 31 4
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Fig. 5a. Convergence of restoration error Fig. 5b. Likelihood increase with progress of
iterations
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The ML iterations specified by Eq. (4) result in a nonlinear dynamical process of the

form
Fen) = (7, () 6)
g())

A—————}(@ 21(J) |. The convergence of the iterations can hence
H (D ®R() ,

where @(, (/) = /, (j)H
be examined in terms of the equilibrium points of this dynamical system, or equivalently of the
“fixed points” fk (7) that satisfy

(/D) = /). @)

It is easy to see that this condition is attained at the k-th ite;ration when the restored image
satisfies the equality
g() = [ (N® (),
since the quantity inside the square brackets in the description of dD( fk ( j)) becomes 1 (when the

PSF is symmetric and normalized, which in turn implies that 1® A(j)=1). Let the image
estimate vector { f ( j)} denote this convergsd value. Thus

HOEFAOLL0) ®)
specifies the fixed points‘ { f" "(j )} of the ML restoration algorithm given by Eq. (2).

A careful examination of the condition specified by Eq. (8) reveals several interesting

facts. First of all observe that it corresponds to the condition in the frequency domain
G(jw) = F'(jo)H(jw) )
and hence is satisfied by any estimate { f “( j)} that restores the passband spectrum. Due to the

band-limiting operation of the convolution with the PSF vector {h(j)}, the image estimate




{f ( j)} that satisfies Eq. (6) is not unique. Since equality outside the passband of the sensor is
trivially satisfied (i.e., both the left and the right sides of Eq. (9) become zero), there exist an
infinite number of vectors { f ( j)} that make Eq. (10) hold. These vectors are however related in

the sense that each of them has a specific structure that permits it to be written as the sum of a

fixed vector {/} o j)} that matches the object spectrum F(jw) identically below the diffraction
limit (i.e., for w < w,) and another vector {fm ( j)}with arbitrary values but with the spectrum

below the diffraction limit identically zero. In other words, any estimate {/} "( j)} that can be

written as
I )= Fn+ Fah) | (10)
where j} +(J) and /} +(j) satisfy the frequency-domain conditions:
(VH(jo)F,,(jo)=G(jo)
()F (jw)=0 for w < w,, (11)

serves as a fixed point of the ML algorithm.

It is now simple to note that the ML algorithm that iteratively strives to maximize the

likelihood of the estimate { fk ( j)} , which gives rise to the image vector { g(j)} upon convolution
with the PSF vector {h(j)} , attempts to enforce the passband restoration condition given by (i)

above. Hence, when an estimate { f"k ( j)} that satisfies this condition is obtained at the &-th

iteration, the algorithm ceases to do any further work. Consequently, convergence of the
algorithm is to be interpreted only in terms of restoration of the passband spectrum of the image.
In other words, these algorithms principally strive to restore the passband as accurately as

possible with the following resultant effects:
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(1) Since there is no special incentive for obtaining the part { f"k“"’ ( j)} that matches the object

spectrum outside the diffraction limit specified by @, , this vector obtained at the end of several

iterations (when convergence has occurred) could have elements whose contribution to the
frequency spectrum is much smaller than the contribution of the other part { fp,, ( j)} . In other

words, the “energy in the frequency extension” could be very small (or even negligible).

(i) When passband restoration is completed (i.e., when convergence has occurred), no
further changes in the estimate { fk ( j)} are likely, since the likelihood function will have

attained its maximum value.

The analysis given above of the convergence behavior of the ML iterations is very
helpful in obtaining an insight into the nature of the multiple fixed points of the algorithm and
the effects of processing digital imagery data. Due to the infinite number of fixed points and the
corresponding trajectories that describe the convergence of the initial estimates to these
equilibrium conditions, obtaining any quantitative estimates of the convergence rates is rather
difficult. The problem can be somewhat simplified by examining the dynamics of the “itera:ion
error’, or change in the estimate during successive iteration steps, defined by |

a(N=hN-Fali). (12)
The behavior of this error is governed by the nonlinear dynamical process
en(N) = FenD = 1) = O(Fu(1) - (D) (13)
which can be re-written as

een () = e, (1)) (14)
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by expressing fk (j) interms of e, (j). Eq. (14) represents a nonlinear dynamical system whose

trajectory behavior starting from an initial state e,(j)= fo(j)zg(j) is of interest. The
equilibrium points of this “error system” are at the locations where ‘P(ek ( j)) = (0, which implies

(D(fk(j))—fk(j) = 0, and hence e, () = 0. Thus the multiple fixed points of the ML

algorithm { f ( j)}( on the N -dimensional space for the estimate f ) are mapped into the

unique equilibrium point {e(j) = 0} , which is the origin of the N -dimensional space for the

iteration error. Hence the convergence rate for the restoration can be studied in terms of the

trajectory behavior of the “error system” given by Eq. (14) near this equilibrium point.
For small values of e, (/) (i.e., near convergence to thié equilibrium), ‘P(ek ( j)) can be
linearized by a Taylor series in the form
W(e, () = Je, (j)+ [ Higher Order Terms | (15)
where J is the N x N Jacobian matrix J =¥ /&, . Ignoring the Higher Order Terms in the
expansion, the iteration error dynamics can now be approximated by the linear system
e () =Je, (J). (16)
Solving this system of equations yields the trajectory behavior on the N -dimensional error

space which can be described by
e, (/)= J"e () a7
where J* is the state transition matrix of the system and e,(;) specifies the starting error.
From the convergent nature of the ML algorithm it follows that all eigenvalues of J are

inside the unit circle, i.e., ’/1,. (J )‘ <1 where A.(J) ,i=1,2,..., N, denote the eigenvalues of J.

Consequently, the rate of decay of the error e, (/) is larger during the first few iterations of the
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algorithm and progressively flattens as the number of iterations grow, a fact that was confirmed
by the simulation experiments earlier. As will be observed later, this provides the motivation to
introduce appropriate adjustment steps after executing a few iterations of the ML algorithm in
order to re-gain a sharper decay of the error by re-playing the commencement phase of the ML

algorithm several times.

27



3. POCS APPROACH TO RESTORATION WITH SCENE-DERIVED
INFORMATION CONSTRAINTS

3.1  Basics of Convex Set-theoretic Restoration of Images

An approach that runs parallel to but is very distinct from the statistical optimization method
used in deriving the ML algorithm is the employment of a convex set theoretic framework in
which several constraint sets that could bs formulated from known a priori information could be
utilized. In order to highlight the differences between the two approaches, starting once again
with the discretized model of the imaging process given by Eq. (1), the primary objective is to

model each piece of prior information ‘¥, that is known as a closed convex constraint set S, and

seek an estimate f of the object by solving the optimization problem

J=arg min, 3w J,(7.S) (1)

i=1
where L denotes the number of constraints defined, w, are a set of weights, and J,( f ;)

denotes a proximity measure that determines how well the current estimate satisfies the i

constraint. The proximity measure can be uni-juely defined for a convex constraint scenario as

[26]

2

J(f.8) =min, (|f-7, (19)

where f, = P( f ) denotes the projection of f onto the set S,. It is evident that the measure

defined above quantifies deviations in the image domain; one can alternately use corresponding
- measures that quantify deviations in the frequency domain in order to reflect more explicitly the
objectives of super-resolution.

The projection operators are non-linear mappings with several analytical properties which

can be exploited to develop iterative set-theoretic algorithms for image restoration. Although
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several algorithms were developed as early as in the late thirties, the potential of convex
set-theoretic methods in image restoration has come to be appreciated since the advent of the
method of projection onto convex sets (POCS) [22-24].

For a brief description, the first step in applying the method of POCS to an image recovery
problem is to define a closed convex set for each of th; a priori constraints in such a way that the
members of the set are consistent with the associated constraint and each set contains the actual
image distribution. An estimate of the image distribution is then defined to be any member of the
intersection of the constraint sets. Finding an estimate by POCS is then equivalent to the problem
of finding a point in the intersection of a number of closed convex sets.

Suppose that we have several a priori known constraints that can be associated with closed

convex sets C,, i=1,2,..., L, and let their respective projection operators be denoted P. Then
the estimate f",, generated at the n" iteration by a sequential application of the projections on the

previous iterate f, , ie.

A ~

.fu = 1):11 ‘Pm—] 1)/n~2 """""" l)l .flt—l (20)

~

converges to an estimate f in the intersection set C, = C, NC, NG NC,. It is further
demonstrated [26] that a faster convergence to an estimate f’ lying within the intersection set
can be achieved if instead of using the projection operators F, in the construction of the estimate,
one uses “relaxed projections” 7}, i =1,2, ...., m defined by

T =(1-A)[+AP (21)

where A is a parameter suitably selected within the range 0 <A< 2 and the estimate j} is

constructed iteratively by implementing the algorithm
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L R (22)

m* -1

For evaluating the performance of these algorithms an appropriate metric is the normalized

proximity function given by

Zwi‘]i(.;rn’Si)
@, =10log =

m

ZwiJi(jO’Si)

(23)

where w, are weights selected suitably in proportion to the relative importance of the proximities

to individual constraint sets the final estimate is desired to satisfy.
The projection operations executed in a serial manner as described in Eq. (20) (or in Eq.

(22)) corresponds to enforcing the constraints in a sequential m;anner. In practice, one may gain
considerable computational time benefits by applying the projections in parallel and constructing
the estimate as a weighted sum of the individual projections as will be described later.
3.2 Scene-derived Information and Constraint Set Modeling

Due to the ill-posed nature of the super-resolution problem, it is essential to use as much
prior information as we can have in order to make the solution more and more well concigoned.
It is here that lies the advantage of projection based convex set-theoretic methods. POCS based
image recovery schemes are extremely flexible. We can incorporate any a priori information as
long as there exists a mathematically tractable projection operator for evaluating the set
estimates. For example if we have the prior knowledge about the location of object boundaries,
then we can model it as a convex constraint set and restore the object boundary edges. Such
restoration of the object boundaries is of particular interest in super-resolution as we would be

restoring the high frequencies corresponding to the object boundary edges.
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Utilization of prior information for convex set-theoretic super-resolution of images can be
thought of as a two-step process. In the first step we try to extract appropriate information for the
image to be restored. The second step is primarily involved in the subsequent modeling of that
information in the form of a convex set. The main challenging aspect of this exercise is the
extraction of reliable information from given images. Constraint sets that have traditionally been
used in image restoration by POCS formulations are non-negativity of intensity estimates, known
spatial limits on objects in the scene, and variance of noise present in the scene being estimated,
all of which are fairly easy to model as convex sets [28]. We will now present the development
of two new constraint sets that can be formulated by performing simple pre-processing
operations on the image being restored.

Border Constraint Set:

In several scenes of interest, objects of interest will be superimposed as foreground against a
primarily flat background. Thus, a sharp transition in gray level intensity exists in the actual

scene imaged. Due to blurring caused by the sensor, this sharp edge will be lost and image

energy from foreground region flows into the background pixels, thus making it difficult to

decide exactly where the foreground ends and the background begins. Thus, if one can determine
the spatial extent of the object, or the border pixels bounding the object, one can sharpen the
edge between the foreground and the background. In the~ spectral domain, this sharpening
corresponds to recovering the higher frequency components, and hence super-resolution.

Any border extraction algorithm based on edge detection processing can be used for
developing constraint sets that permit a foreground-background separation of the image, a
popular one being Canny’s edge detector [30]. This is a gradient-based scheme which attempts to

design the edge detector by employing an optimization framework in order to achieve the



r_,——————

following objectives: (i) maximize the signal-to-noise ratio, (ii) achieve good localization to
accurately mark edges, and (iii) minimize the number of responses to a single edge.

A version of this scheme that is particularly suited for the present purposes of building a
constraint set for POCS restoration will now be outlined. The basic idea behind the procedure is
to find the maximum of the partial derivative of the image f'in a direction orthogonal to the edge
orientation. To exécute this task, one can create a two-dimensional mésk for the edge orientation
by convolving a linear edge detection function aligned normal to the edge direction with a
projection function aligned parallel to the edge direction. A substantial computational savings
results if both functions are chosen to be Gaussian with the same standard deviation o such that
the mask can be created by differentiating normal to the edge orientation as

_6
" on’

G 4)

2 2

X +y .
5 ] Ideally, n
o

where G is the two-dimensional symmetric Gaussian function G = exp{—

should be oriented normal to the edge direction, and although this direction is not known a

priori, one can form ~ good estimate from the smoothed gradient direction

_ AMG®f)

n= ——————”A(G 2 fx (25)

2

where ® denotes convolution. An edge point is then defined to be a local maximum (in the

direction of ») of the operator G, , which is characterized by aiG" ® f =0, or equivalently
n

5‘37(6 ® f)=0. (26)
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Gaussian smoothing is now done by filtering the image with a Gaussian sliding window, with
the window size generally chosen to be 60 with the two dimensional Gaussian being centrally
located. The resulting filtered version is obtained by placing this mask and performing a
weighted addition of the pixels which lie within the window, with the weight for any pixel
chosen as the value of the Gaussian at that location. In addition to smoothing, this step also helps
in reducing the number of spurious edges due to noise that may be present in the image. A
judicious selection of the value of o provides the desired amount of smoothing, with larger
values providing correspondingly more smoothing. For most images, we found that a value of o
selected in the range 0.5 to 2 provides a good choice.

From the smoothed image, one can easily compute the magnitude and the direction of the

gradient as

s =2 (;;")2 +af(;’yf)2 and @f(i,j)=ar°tan[afg;j)/ afg;j)}’ 7

using the approximations ——— f( ). = f(i+1,j)—f(i-1,j) a aféy]) fG,j+D)=-f3G,j-1).

Once the gradient values are obtained, nn‘t? those pixels that have local maximaAalong the
direction orthogonal to the gradient are chosen by using a non-maximal suppression process
which involves interpolating the gradient field. Edges are then identified as those pixels that have
a local maximum normal to the gradient direction. Pixels that do not satisfy this criterion are
relegated to a NO EDGE (0) set, while those that pass the test are considered as POSSIBLE
EDGE (128) candidates. The values in the parentheses correspond to gray level intensities.

As the final step in the process, the possible edges are linked to form a continuous border
by implementing a double threshold linking mechanism which involves the user specifying two

threshold parameters f,,, and 7, . Let the total number of pixels in POSSIBLE EDGE be N, .
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Then the high threshold r,, corresponds to a magnitude level, say Mag,,, such that

Ui ¥ Negee number of pixels have a magnitude less than Mag,,, , which can be determined

edge

from a magnitude histogram of the POSSIBLE EDGE pixels. Once the high threshold Mag,,, is
determined, the low threshold is then set to be Mag,,, =1, * Mag¢,,, . Any pixel in POSSIBLE
EDGE that has a gradient magnitude greater than Mag,,, is classified as a valid EDGE (0)

point. Any pixels connected to these valid EDGE points with a gradient value above Mag,,, are

also classified as EDGE points. In other words, we start from any pixel in POSSIBLE EDGE
and look at its 8-point neighborhood for other POSSIBLE EDGE pixels that satisfy one of the
two criteria stated above. At the conclusion of this step, the algorithm results in an edge map

consisting of EDGE (0) pixels, POSSIBLE EDGE (128) pixels, and NO EDGE (0) pixels.

Selection of suitable values for the threshold parameters ¢, and ¢,,, is critical for a continuous

tracking of edges. For the present application to extract border pixels, a good range of values can

be determined empirically as 0.6 < 7, <0.9and 0.2 </, < 0.4.

The border tracking performance of the above schewe.can be illustrated by an
experiment. Fig. 6a shows the input image used for analysis, Fig. 6b shows the edge map

obtained and Fig. 6¢c shows the thresholded edge map resulting from selection of threshold

parameters ¢, =0.6 and ¢,,,=0.2.
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6a 6b 6¢c

Fig. 6. Border tracking performance:
6a. Input image; 6b. Edge map; 6c. Thresholded edge map.

Once we have the set of border pixels identified, we are ready to proceed with the second
stage of the border information modeling. For implementing this stage, we propose a method of
modeling the border pixel information as a convex constraint set and subsequenty define a
projection operator.

The constraint set is defined as one that enforces a background-foreground separation and
can be mathematically formulated as

S, = \f € E: foreground of image f is bounded by & } , 28)
where & denotes the set of border pixels. The projection operator associated with this set exiéts

provided if the set is closed and convex, which can be easily ensured if we are dealing with solid

convex shapes. The projection operator is then given by

f(,7):(,)) lies inside &
Punier () = 1, where f, (i, /) ={ (29)
0 :(,J) liesoutside &.
In the case of images that may contain multiple objects, a challenge in the application of

the above procedure arises in making a decision on whether a pixel lies inside one of the borders.

If one assumes the borders to be convex in shape, any pixel which lies inside the border needs to
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be completely surrounded by it, ie. if we move up, down, left, or right from the pixel in
question, we are bound to hit the border in any of these directions. This logic may lead to an
erroneous result when multiple borders are present, as illustrated in the scenario depicted in Fig.
6. Hence, not only do we need to have intersection with the set of border pixels as we move in all
four directions, we should also verify whether all four intersections are occurring with the same
set of border pixels. This can be easily handled by assigning a unique label (in the form of gray
level intensity) to each of the different sets of border pixels. As illustrated in Fig. 7, the definition
of the projection operator characterizes pixel at location P as a valid foreground point whereas

both Q and R are set to the background correctly.

Fig. 7. Projection operation for enforcing border constraint in an image with multiple borders.

To obtain a feel for the extent of restoration and spectrum recovery provided by this
constraint set, a controlled experiment was conducted. Fig. 8a shows a simulated image
containing multiple objects with different shapes that was blurred by a low pass filtering

operation. Fig. 8b shows the blurred image. The loss of spectral content due to blurring can be
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seen by comparing Figs. 8c and 8d, which respectively show the spectrum of the original image
and its blurred version. The border map obtained from an application of the procedure described
above is shown in Fig. 8e. The restored image obtained from a single enforcement of the border
constraint is shown in Fig. 8f and the corresponding spectrum is shown in Fig. 8g, which clearly

illustrate the restoration and spectrum recovery achieved from this constraint. For obtaining a

8e 8f 8g

Fig. 8. Restoration and super-resolution of a blurred image using border constraint set
8a. Test image; 8b. Blurred image; 8c. Spectrum of test image; 8d. Spectrum of blurred image;
8e. Output of border extraction filter; 8f. Restored image; 8g. Spectrum of restored image.
quantitative evaluation of the improvement achieved, the L,-norm of the deviation between the
original image and the restored image was computed as 18.69243, which compares favorably
with the corresponding deviation between the original image and the blurred image computed as

21.94160. Achievement of this level of restoration from a single application of the constraint is

clearly remarkable.




Template Constraint Set

With object border information extracted as above, we cannot restore any non-border edges
present in the scene. This is where template-based information modeling becomes useful. A
requirement for utilizing this information as a constraint set is the prior knowledge of the
presence in the scene of a certain set of temi)lates, a pattern or a sub-image that may occur a
multiple number of times in the scene (a right angled corner, circular wheels, etc.). A template
matching filter can then give as output the location of the template in the image.

Several procedures for design of template matching filters are discussed in literature. Some
early methods, which are quite simple to implement, are based on image subtraction and
correlation matching. In one of these methods, the absolute difference between the image and the
template is used to determine the template location. While computationally less demanding, this
method assumes perfect knowledge of intensity levels and works only in a stationary imaging
scenario. Another method, which is more robust to noise and image variations, attempts to
construct the filter function that upon convolution with the image containing the template
generates maximal response at the templat- locations. The main drawback in this method
however is a lack of proper localization of the template occurrence and the inability to account
for the off-center response resulting in broad peaks, which in turn can interfere with accurate
localization. A recent and more efficient procedure for degigning a template matching filter
involves expansion of the image in terms of nonorthogonal basis functions [31], which we
propose to employ for identifying template locations and construction of corresponding
constraint sets for restoration processing. Matching by expansion is based on expanding the
image in terms of basis functions which are all self similar shifted versions of the template. The

procedure is briefly outlined in the following.
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For expanding an image s(x,y)of size NxN in terms of shifted versions of the template
#(x,y), one uses the circulant basis functions
W, (x,y)=¢(x-r,y—c), r,e=01..,N-1 (30)
in terms of which s(x, y) is estimated in the form
S =3 S e, (%,9) (31)
In (31), x,. denote the expansion coefficients which are to be found to minimize the deviation
between s(x,y)and 5(x,y). By a lexicographic ordering, s(x,y), §(x,y), and . (x,y)can be
expressed as N ?_dimensional vectors V,I7, and ¥, respectively in order to formulate the
criterion for finding the coefficients «,, as one of minimizing the squared deviation given by the
inner product <(V - I}),(V - I}) > Now utilizing the orthogonality principle that. the
approximation error ¥ — V is orthogonal to the basis functions, one obtains the N*equations ‘
<V-V),¥>=0, i=0]12,..,N' -1, (32)
For facilitating the goal of evaluating the expansion coefficients x, , these equations can be
rewritten more compactly in a matrix form as
Ry, K =¥V 33)
where R, denotes the N 2 x N? autocorrelation matrix whose (i, ) -th element is <‘P,,\P_,.> W=

[¥,,¥,, ...,‘{JNZ_IJ and Kis a matrix consisting of the expansion coefficientsx,.. If the basis

functions selected are linearly independent, R, is positive definite and x,. can be uniquely

determined by solving Eq. (33). Solution of Eq. (33) by inverting Ry, is computationally
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prohibitive in most cases, and hence Ben-Arie and Rao [31,32] suggested an alternative simpler
method obtained by treating the expansion problem as an equivalent deconvolution problem.

For the discrete image s(x,y) of size Nx N to be expanded by a set of self-similar basis

functions w (x,y) as

SV =D DKy (), (34)
if the basis functions ,(x, ) can be densely arranged in discrete equidistant locations, we have
W (x,y)= ¢(x,y) ®5(x—i,y—J) = ¢(x=i,y - J) (35)

and hence (34) can be re-written as the discrete convolution
sy =D D Kb =iy~ ) =k(x,1) ©§(x,). (36)
The problem of finding the expansion coefficients &, can now be handled as reversiné the

convolution operation in Eq. (36). A particularly simple method is to design a Wiener filter for

the case when the image s(x, y) is assumed to contain a noise signal A(x,y), i.e.

s(x, ) == k(x,y) ® §(x,y) + A(x, ). (37)
The Wiener filter is then given by

Sn' (wl > a)2 )
S.\:\' (a)] > wZ )

O(w,,w,) =

2
S0, 0,)=0(w,,0,)*S  (@,0,) ; S, (@,,0,) =S, (0.0, )”(D(a)l >0y )” +S5,(0,0,). (38)
In Eq. (38), S and S,, respectively denote the spectral densities of the signal s(x, y)and

noise A(x, y), and S,, denotes the cross spectral density of s(x,y) and the coefficients x(x,y).

®(w,,w,) is the Fourier transform of the template ¢(x,y) and the symbol #* denotes

conjugation. In an ideal scenario, the discrete function «(x,y)will have a value 1 for

40



x=x,,y=y,and will be zero elsewhere. Hence the spectral density of x(x,y) should be a
constant, say K,. Moreover, if the additive noise is assumed to be white gaussian, its power

spectral density is also a constant, say K,. Hence, Eq. (38) can be rewritten as

O(w,,w,)= q)("’"“’g) 39)
|®(w,,0,)| +K .
where K = —If—'-
KZ
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Fig. 9. Template location in a test image
9a. Template; 9b. Test image containing template; 9c. Plot of expansion coefficients

For an illustration of the application of this filter to identify template locations, Fig. 9a
shows a template that occurs at two locations (10,10) and (150,130) in the test image shown in
Fig. 9b. Fig. 9c shows a plot of the magnitudes of the expansion coefficients in various columns,
which correctly depict sharp peaks at the two relevant columns where the template is present.

Once the locations of a template in the image are obtained, one can proceed to design a

constraint set and a corresponding projection operator for use in the POCS restoration scheme.
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For a template @(i, ) of size mxm identified at the (k,/) pixel location by the filter, the

constraint set can be defined as
S mpre = {feE: flk+i,l+j)=¢G,)), where i,je[0]1,2,.,m~1]} (40)

(k,]) e { C, : Set of coordinate locations of the template occurrences }

-~loc *

The projection operator for this set is given by

6G, ) 1 i,j€[01,2,..,m—1] }
Pronpiare () = f, where f,(k+i,1+ j)={ (41)
f@,)) : elsewhere.

The template matching filter as described above performs a binary decision regarding the
existence or non-existence of a specific template at a given location in the image, and outputs a
peak value at the template location. If multiple templates are present in a given image, a bank of
filters, each constructed for a specific template, can be employed in parallel for obtaining the
template locations. Alternately, it is possible to modify the filter design such that peaks.of
different magnitudes corresponding to different templates are obtained in the filter output thus
eliminating the need for multiple filters. Details of these modifications are omitted here and can
be found in [31,0Z]. /

3.3 Restoration of Blurre(i Images using Scene-derived Constraint sets
In this section we shall briefly describe the restoration and super-resolution_ performance of
two set-theoretic estimation algorithms using the constraint sets developed in the last section by

employing a POCS framework. In addition to the two sets S,,,,, and S, .. described by Egs.

(28) and (40), we will use the following three constraint sets:

() S, ={f€E2:2552 f(1,/)20,i,j=12,.N } (42)

(i) S, = {f€B: fG,))=0if G,))e& } (43)
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and

(i) S ={feE: Fk,l)=G(k,]),(k.l)e ¢ }. (44)

.\'[lL‘L'lnllIl
While the constraint imposed by S, is self-explanatory, S, imposes a spatial extent
constraint based on any prior knowledge of a support ¢ for the actual image distribution, and

S imposes a constraint in the frequcncy domain by setting the Fourier transform F(k,/) of

,\'[)L‘(.'I"IIIII
the image f equal to the Fourier transform G(k,/) of the original image g within the passband of

the sensor ¢ . It may be noted that these constraint sets are the ones that have been traditionally

employed in POCS-based image reconstruction work in the past [22-24]. The corresponding

projection operators can be defined as:

£, if 0< f(i,7)<255 «
Q)  Pu(f)=/f, where £,G,)=1{ 0 ,if f(G)<0 (45)
255 ,if f@,j)>255.

fG@j).if G,))es
(i) Py (f)=f, where f,(i,j) =1 (46)
0 if () e L.

Gk, if (k,)ed ,
(i) Py (f) = f, Where F,(k,1) ={ (47)
Fk,D, if (k,)e <.

These three operators together with the operators 7, and P, .. defined in Egs. (29) and (41)

form the set of operators that will be used in a POCS framework for restoration and super-

resolution.

For designing the specific algorithm that employs these constraints one has several options.

One option is to use a sequential implementation of the projections F, at each iteration step as

described by Eq. (20) in order to construct the next iterate. Alternately, as noted earlier, one may
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use the relaxed projections 7, constructed from P as described in Eq. (21), in a sequential

i
manner to implement the algorithm described in Eq. (22). Improved results together with faster
implementation of the algorithm can be obtained from a parallel execution of the projections at
each iteration. We shall hence discuss this method in a greater detail in the following.

As noted before, in the traditional implementation of the projections one enforces the
constraints in a sequential manner, which in general can result in large computation times,
particularly if a number of constraint sets are used. A more efficient implementation will involve
employing a parallel processing architecture in which the projections onto the different constraint
sets at each iteration can be simultaneously executed and the next iterate is computed as a
weighted sum of these projections. One version of this approach, popularly referred to as the
Method of Parallel Projections (MOPP) [33,34], has been found in our investigations to possess
_ attractive convergence properties. In this scheme, an elementary iteration consists in projecting
the current estimate simultaneously onto selected sets and forming a relaxed convex combination
of the projections.

For a brief description of the method, given the image to be re.tored, denoted as the starting

image f(0) for commencing the POCS iterations, and two numbers ¢ e (0,1) and M a positive

integer, MOPP implements the recursion

f('HI) = f(") +j’u ZW’L"])L" (.f('l)) -—f(“) (48)

iel,
together with the following conditions:

() 4, ele2—¢]and (i) Y w, =1, where 0=, <] and ] c U} L,,,,

1€,

I denoting the set of constraints used.
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For demonstrating the restoration performance of the MOPP algorithm, we shall present the
results of a simulation experiment in Figs. 10a-b. The blurred image to which the method was
applied is shown in Fig. 10a and its restored version after 20 iterations of MOPP algorithm using
the border and template constraint sets is shown in Fig. 10b. The normalized proximity measure

given by Eq. (8) was used as the performance measure.

10a 10b

Fig 10. Restoration of a blurred image with MOPP algorithm
10a. Blurred image; 10b. Restored image
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4 A HYBRID SUPER-RESOLUTION ALGORITHM COMBINING
POCS AND ML APPROACHES

It is evident from the discussion in the last section that the POCS approach provides an
attractive alternative to the statistical optimization approach for restoring degraded images. In
particular, for super-resolving poorly acquired images by the POCS approach the flexibility
offered for constructing constraint sets and utilizing them during processing is particularly
noteworthy. It is to be noted that the types of information used in the restoration, viz. border
constraints and template constraints, are not possible to utilize during implementation of
algorithms derived following statistical optimization-based approaches, for instance during
execution of ML super-resolution algorithm discussed in Section 2. However, statistical
optimization methods in general, and ML algorithm in particular, have a number of advantages
(as discussed before) which one may not like to sacrifice. The strong points of these two
complementary approaches can be combined to produce hybrid schemes that offer very attractive
restoration and super-resolution performance. Two such hybrid algorithms will be presented in
this section.
4.1 POCS-assisted ML algorithm

In this scheme, we implement the ML iterations given by Eq. (2) as the main image
restoration scheme and include a POCS adjustment of ’the ML estimate for enforcing
constraints after every cycle of ML iterations is completed. More specifically, we execute L
iterations of POCS adjustment after each cycle of X iterations of the ML algorithm. Thus,
each iteration cycle of the combined algorithm applies an ML iteration cycle comprising K
number of ML iterations followed by a POCS adjustment cycle comprising L number of

POCS iterations. The combined algorithm is run for a total of N iterations. It is easy to see that
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this algorithm in effect performs a constrained maximization of the likelihood function in an

iterative manner. The implementation details are summarized in the following table.

~

Read the blurred image data (g).

Set initial conditions to commence ML iterations, f, = g.
Perform %iL restoration implementing the updating algorithm given in Eq. (2).
Compute the likelihood and [, -norm values at the .end of each iteration.

Repeat steps 3-4 for K iterations.

Perform POCS adjustment using MOPP scheme and implementing updating algorithm given in Eq. (48).
Repeat step 6 for L iterations.

Repeat steps 3-6 for N iterations.

© NS L A W

Save processed image and compute likelihood and , -norm values.

Table 1. Simulation Flow of POCS-assisted ML Algorithm

For evaluating the performance of this new algorithm, we conducted a number of simulation
experiments. The results of one experiment will be briefly described. In this experiment, the
POCS-assisted ML algorithm was used to restore the blurred image shown in Fig. 10a .by
employing the same two constraints as discussed in the last section ( viz., Border Constraint and
Template Constraint) for POCS adjustment. The algorithm was implemented with values of K=5
and N=3 (K being thc number of ML iterations executed before a POCS adjustment and N being
the total number of iterations for the combined cycle). However, we varied the value of L, the
number of POCS adjustment iterations within each cycle from two to ten and examined the
effect it has on the performance of the ML algorithm. Figs. l‘la and 11b respectively show plots
of the variation of the likelihood function and the /,-norm of restoration error computed in the
spatial domain against the total number of ML iterations executed with the value of L varied
from L = 0 (pure ML algorithm with no POCS adjustments) to L =2, 6, and 10. It is evident that
the hybrid scheme outperforms the ML algorithm without any POCS adjustments. An item of

special interest to note is the jump in the likelihood function as the algorithm switches from ML
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iteration cycle to the POCS adjustment cycle. A corresponding fall in the /,-norm of the
restoration error is also observed at these points. Furthermore, the amount of increase in the
likelihood (and the decrease in /,-norm of the restoration error) improves with the number of

iterations of POCS ( i.e. value of L) executed. However, it is also interesting to see that most of
the improvement due to the inclusion of POCS adjustments comes during the first few iterations

of POCS and beyond that there is not much change in the performance.

123.55

1250 7
/’ o
12345} e

1204

12335} /s g

1223+ ra 4

Lkelihood

12325k ¢

12321

12315 !

L " L L ' 2
2 4 8 8 10 12 14
ML #eraion

Fig. 11a. Plot of Likelihood Values

T
—— ML-POCS-2
—+ ML-POCS-6
« 4+ ML~POCS--10
ML

or S T

lj—nor m
-
-
T
Lanyedr
+
§
3

12-

0

. L A i 2 L
[¢] 2 4 ] a 10 12 14

Fig. 11b. Plot of 1,-norm of Restoration Error

48



4.2 ML-assisted POCS algorithm

An alternate way of creating a hybrid restoration algorithm is to use POCS updating as the
main restoration scheme and employ execution of ML updating for the intermediate
adjustment steps. We shall refer to this algorithm as ML-assisted POCS algorithm in further
discussion. More specifically, we execute K iterations of ML adjustment after each cycle of L
iterations of the POCS adjustment implemented using the MOPP approach as in Eq. (48).
Thus, each iteration cycle of the combined algorithm now applies a POCS iteration cycle
comprising L number of POCS iterations (implementing the updating in Eq. (48)) followed by
a ML adjustment cycle comprising K number of ML iterations (implementing the updating in
Eq. (2)). The combined algorithm is run for a total of NV iterations. The implementation details

are summarized in the following table.

1. Read the blurred image data (g).

2. Set initial conditions to commence POCS iterations, ﬁ) =g.

Perform POCS restoration using MOPP framework and adaptive relaxation implementing the updating
algorithm given in Eq. (48).

Compute the likelihood and 1, -norm values at the end of each iteration.

Repeat steps 3-4 for L iterations.

Perform ML adjustment implementing updating algorithm given in Zgq. (2).

Repeat step 6 for K iterations.

Repeat steps 3-6 for N iterations.

o o N ok

Save processed image and compute likelihood and 12 -norm values.

Table 2. Simulation Flow of ML-assisted I;OCS Algorithm
The performance of this algorithm was also evaluated by applying it to the same restoration
problem discussed earlier of restoring the blurred image shown in Fig. 10a. The POCS updating
was implemented by employing the same two constraints as discussed in the last section ( viz.,
Border Constraint and Template Constraint). The algorithm was implemented with values of L=5

and N=3 (L being the number of POCS iterations executed before a ML adjustment and N being
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the total number of iterations for the combined cycle). In this case, the value of K, the number of
ML adjustment iterations within each cycle, was varied to examine the effect it has on the
performance of the POCS restoration. Figs. 12a and 12b respectively show plots of the variation
of the normalized proximity measure (computed as in Eq. (23)) and of the /,-norm of restoration
error computed in the spatial domain against the total number of POCS iterations executed with
the value of X varied from K = 0 (pure POCS algorithm with no ML adjustments) to K = 2, and
5. Once again it is evident that the hybrid scheme outperforms the POCS iteration scheme
without the ML adjustments. Of particular interest is to note the downward break in the two plots
as the algorithm switches from the POCS iteration cycle to the ML adjustment cycle.
Furthermore, the amount of performance improvement increases with the number of iterations of

ML adjustment (i.e. value of K) executed between two POCS cycles.
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Hoe does this algorithm compare with the other hybrid algorithm presented earlier? To
answer this question, an examination of the /,-norm plots in Figs. 11b and 12b can be made
since the same blurred image was processed by the two algorithms using the same sets of
parameters. At the end of 15 iterations of the main restoration algorithm, the ML-assisted POCS
yielded a smaller value of the restoration error than the POCS-assisted ML algorithm. The latter
algorithm started with a larger initial error but the POCS adjustment step caused a sharper decay
in the error compared to that produced by the ML adjustment step in the ML-assisted POCS
algorithm. One should also take into consideration that the ML-assisted POCS algoritﬁm
required more computation time for the same number of iterations than the other scheme. Thus in
practical implementations where processing time (and hence the number of frames that can be
processed within a given time) is of particular concern, one may prefer the POCS-assisted ML
algorithm over the other hybrid scheme. On the other hand, when quality of the final restored

image is of importance, the ML-assisted POCS algorithm seems to be a better choice.
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4.3  Application of POCS-Assisted ML Algorithm to Restoration of PMMW Images

An application of POCS-assisted ML algorithm has been made to the sﬁper-resolution of
PMMW images with significant performance improvements noted in comparison to the
application of ML algorithm. For providing an illustration of this, we show in Fig. 13a a PMMW
image, popularly referred to as “Pattern Image”, collected by a 95 GHz camera with a 3 in
lens/horn built at‘ the Army Research Laboratory (ARL) at Adelphi, MD. This image, of size
65x 33 pixels, has over the years become a sort of benchmark image for testing the performance
of different super-resolution algorithms. More details on this data can be found in various ARL
publications, one of which is the recent paper by Silverstein [18].

Fig. 13b shows the restored image after 15 iterations of the ML algorithm. The application of
the POCS-assisted ML algorithm to the same image with 5 ML iterations and 3 POCS
adjustments alternately implemented for 2 cycles (i.e. K =35, L = 3, and N = 2) resulted ip a

restored image shown in Fig. 13¢. Comparing the images in Figs. 13b and 13c, one may note the

13a

13b 13¢

Fig. 13. Results of processing PMMW “pattern” image by ML and POCS-assisted ML
algorithms.
13a. Acquired Image; 13b. ML Processed Image; 13c. Image processed by POCS-assisted ML
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superior edge restoration and the absence of processing artifacts, which clearly illustrate the
strengths of the present hybrid algorithm. It is to be noted that these performance gains have
resulted in addition to a reduction in the total number of ML iterations (only 10 in POCS-assisted
ML compared to 15 in ML), whi_ch is the more computationally expensive part of the super-
resolution process.

As a further comparison of the super-resolution performance, the spatial frequency
distribution plots were also compared. Fig. 14 shows the variation of the normalized intensity (in
dB) plotted as a function of the frequency for a cut through the spectrum of the acquired image
(shown in dotted lines) and also the corresponding variations for the ML processed image
(shown in dark solid line) and for the POCS-assisted ML processed image (shown in fainter solid
line). It is easy to see that while the ML algorithm has recovered some frequencies beyond the
passband of the sensor, the recovery of spectral components by the POCS-assisted ML algorithm
is significantly more extensive.

As a final illustration of the performance of the POCS-assisted ML algorithm in super-
resolving PMMW images, we show in Fiz. 15 below the restoration of the “Tank” image
discussed earlier in Section 2. This is a resultant of processing with the POCS-assisted ML
algorithm using 5 ML iterations alternating with 5 POCS adjustment iterations implemented for
3 cycles, which corresponds to a computation time roughly eduivalent to that required to execute
15 ML iterations. Comparing the restoration obtained here with that shown in Fig. 4c, which is
the restored image after 100 ML iterations, one can clearly appreciate the benefits resulting from

the hybrid approach presented in this work.
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Spectral Data(ARL "Pattern” Benchmark)
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Fig.14. Comparison of spatial frequency spectra of processed and unprocessed images
(Dotted line — original blurred image; Dark solid line — restoration by ML algorithm;
Fainter solid line — restoration by POCS-assisted ML algorithm)

Fig. 15. Restoration of “Tank” image by POCS-assisted ML algorithm
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5. CONCLUSIONS

The major contributions from this project are the development of scene-based information
sets for use as constraints within a set-theoretic estimation framework for image restoration and
the design of two new hybrid algorithms, called POCS-assisted ML algorithm and ML-assisted
POCS algorithm. These algorithms, which iteratively apply a cycle of ML estimation iterations
followed by a cycle of POCS adjustment iterations, combine the strong points of the two
approaches and hence possess a number of implementation benefits. For facilitating the POCS
adjustment, two novel information sets that may be derived from the image being processed were
also developed. These sets, together with the traditionally applied constraints, such as non-
negativity of intensity, spatial extent of objects, and noise variance, provide a rich set of
information constraints that can be advantageously utilized to speed up the convergence of the
ML estimation process. Several experimental results were presented to describe the performance
of the new algorithms in super-resolving PMMW images. The superior restoration of the object
features observed in the image domain and the significant extrapolation of spatial frequencies
observed in the spectral domain lead us to conclude that the POCS-assisted ML algorith:n and
the ML-assisted POCS algorithm are perhaps the most powerful super-resolution algorithms

available today for restoration of imagery acquired from diffraction-limited sensing operations.
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